7th International Symposium on Material Testing Reactors, October 20–23, 2014, Otwock-Świerk, Poland

Long-Term Irradiation Technology using Capsule at HANARO

Kee-Nam CHOO, Man-Soon CHO, Sung Woo Yan Yoon Taek Shin , Seng Jae Park, Sang Jun Park

Korea Atomic Energy Research Institute **KAERI** HANARO (High-flux Advanced Neutron Application ReactOr)

Panoramic views of HANARO

HANARO : Multi-purpose Research Reactor

HANARO Building

Reactor Hall

General Features of HANARO

: Open-tank-in-Pool Type Maximum Thermal Power : 30MW_{th} Max. thermal neutron flux : 4.4x10¹⁴ n/cm²·sec : 2.1x10¹⁴ n/cm²·sec Max. fast neutron flux : Light Water Coolant : Heavy water Reflector : U₃Si, 19.75% enriched **Fuel Materials** Absorber : Hafnium **Reactor Building**

: Confinement

3

HANARO has two kind of fuel assemblies.

One is hexagonal type, 36 fuel elements, the other is cylindrical type, 18 fuel elements.

KAER Irradiation Facilities in HANARO

Facilities

Small Size Specimens : RABBIT Standard Size Specimens : CAPSULE Si Doping : NTD

Rabbit

Non-Instrumented Capsule

Instrumented Capsule

Capsule Control System

National Nuclear R&D Programs

Technology Needs for NGNP Materials

Next Generation Nuclear Power Plants

Status of HANARO Irradiation technology

Fields	KAERI	Worldwide	R&D Target	Remarks
Temp. (°C)	250~700	60~1000	60~1000	Irradiation
	±10	±3	±5	Accuracy
Fluence Meas. Accuracy	-	±20%	±20%	Thermal
	±20%	±10%	±10%	Fast
Flux (n/cm ² .sec)	$6x10^{12} \sim 1.4x10^{1}$ ₄	No limit	$1.5 x 10^9 \sim 1.4 x 10_{14}$	E>1 MeV
Long Term Irradiation Cycle (days) Fluence (n/cm ²)	4 cycles (~100 days)	No limit	20 cycles (~500 days)	
	<1x10 ²¹	No limit	$<5x10^{21}$	E>1MeV
Instruments	K-type T/C	R/D	LVDT / SPND	

Research Reactor Project

RR Irradiation Project

KAERI

- Jordan Research Reactor (JRTR) by 2016
- ✤ Ki-Jang Research Reactor (KJRR) by 2017
- Database of Be, Graphite, Zircaloy-4 for 'Optimized Core Design'
- Material Irradiation: Growth, Swelling, Tension Hardness, Conductivity, Microstructure at <100°C up to <u>8 cycles</u> (~2x10²¹ n/cm², E>1 MeV)
- U-Mo Plate Fuel irradiation

New Capsule Design for RR materials

Capsule Design Concept

- RR Core Materials at Low Temps. (<100°C) (Standard Capsule Temp. : 250~700°C)
 - New Design : Coolant Flow into Capsule
- Long-term Irradiation Capsule (> 8 cycles (~ 3 dpa)
- Mock-up Capsule for Out-pile testing (11M-19K)

Characteristics / Safety

- Evaluation of Nuclear / Thermal Properties
- Hydraulics : Coolant Flow, Vibration
- Endurance Test : 110% of Coolant Flow
- Safety Evaluation and Approval for Irradiation

(Committee of Reactor Operation)

Coolant Flow into Capsule

9

KAERI Hydraulics of Capsule in Coolant

80

Amplitude

20

80

60

40

20

Amplitude

Accelerated Testing (110% Coolant)

Vibration Magnitude 175% at 110% coolant flow

Laser Vibrometer

Flow Induced Vibration Test

Vibration of Capsule in Coolant

Vibration Properties

- 11M-19K Capsule in 110% Coolant Flow
 - Main Vibration Cycle : 11 Hz
 - Magnitude at 11Hz : ~120µm

Condition	1-channel Out-pile Facility				
(1.42m Height)	Coolant Flow 110%				
Measuring	S-N Direction	E-W Direction			
Max.	508	404			
Min.	-388	-380			
RMS*	111.18	120.42			

RMS = root mean square

KAERI

KAERI Examination of Fracture Surface

No Apparent Causes for Failure

Analysis on Fracture Surface

Fracture Surface : Optical Microscope / SEM

- Typical Fatigue Fracture
- Cracks progress : Surface ⇒ Center region

Design Improvement of Capsule

Rod Tip Design Changes

- Impossible Shape for Stress Relieving -
- 1) Material Change
 - Stainless Steel 304
 - Stainless Steel 316L
 - Resistant against Fatigue Cracking
- 2) Welding Method Change
 - TIG (Tungsten Inert Gas) Welding
- EB (Electron Beam) Welding
 - Precise control of Welds : small welds
- 3) Evaluation
 - Mechanical Tests with Mock-up
 - Equivalent Strength to Base-material
 - Out-pile Endurance Test
 - Extended Lifetime

Out-Pile Endurance Tests

Test Results

- Capsule Rod Tip 1st Failure (STS304, TIG)
 - After 40days : Cycle < 3.80E+07 Cycles (=40x24x3600x11Hz)
- Capsule Rod Tip 2nd Failure (STS316, EB)
 - 193~203 days : Cycle > 1.83E+08 Cycles (=193x24x3600x11Hz)
 - * UHCF (Ultra High Cycle Fatigue) : > 10⁷ cycles * Fatigue limit = 120-130 N/mm²

Stress Analysis

Stress/Flow Analysis

- Capsule in Coolant Flow (19 m/sec)
 - Seismic / Coolant Flow Dynamic Analysis
- Stress Analysis by Flow-induced Vibration
 - Seismic Analysis at Rod Tip (weak point) : 36.5/47.5 N/mm² (less than allowed stress (124 N/mm² : 0.6xSTS304-UTS(206))
- Additional Data for Optimal Design for Long-Term Irradiation

Improvement of Capsule System

Design Changes

1) Guide Tube

- PVC Spring Hose : consumable
- Stainless Steel SS Braid/Bellows
 - Permanent system
- 2) Junction Box
 - Enlarged size for work space
 - Bolt-Nut closing system
- Quick Clamp System
 - Precise power control of sealing
 Gasket

3) Gas Control System

- 2 gas control line
 - Inlet (Bottom) / Outlet (Top)
 - First operation in Nov. 2014

KAERI Long-Term Irradiation Capsules

Irradiation Capsule

Specimen

- Material : Graphite, Be, Zircaloy-4
- Tensile, Growth, Swelling, Hardness, Thermal conductivity
- 532 specimens

Capsule

- 11M-20K, 11M-21K
- Thermocouple, fluence monitor (F/M)
- 4 / 8 cycle irradiation at low temperature (36-56°C)

KAERI LONG-Term Irradiation at HANARO

Low Temp. Irradiation Technology

External Tube Specimens

연구로 노심 최적설계 및 인허가 승인에 필수 자료

Long-Term Technology

Microstructure Examination

Rod Tip after Irradiation

Cutting in Hot Cell

- Visual Examination after Irradiation
- Microstructure Examination
 - Optical / SEM : Integrity
 - Micro-cracks / Defects

Internal Cracks in Welds of Out-Pile Tested Capsule

Microstructure Examination

Post Irradiation Examination (II)

Capsule (11M-20K) after 4 cycles

- No cracks / defects was observed after 4 irradiation cycles

Post Irradiation Examination (II)

Capsule (11M-21K) after 8 cycles

- No cracks / defects was observed after 8 irradiation cycles (~2x10²¹ n/cm², E>1 MeV)

Irradiation Contribution of HANARO

Summary

- 1) A new capsule for 'Long-Term Irradiation' was successfully designed and irradiated up to 8 cycles (~3 dpa) in HANARO.
- 2) It was evaluated to be safe by <u>post-irradiation microstructure</u> <u>examination</u> showing <u>no Defects / Cracks</u> in the vulnerable part (rod tip).
- 3) The rod tip of the capsule was observed to be vulnerable and it seems to be caused by <u>fatigue failure</u> due to vibration of the coolant flow.
- 4) Considering the literature [P. Fenici (1992)] that the <u>crack initiation is</u> <u>quite time-consuming process</u> (more than 50%) and that <u>neutron</u> <u>irradiation retards crack initiation/growth</u> of stainless steel, the new capsule design can be applied for a longer irradiation test.
- 5) <u>Standard capsule having smaller vibration than Low-temp. capsule will</u>

be enough safe for 8 cycle irradiation in HANARO.

Vibration (µm)	Standard Capsule			Low-Temp. Capsule		
	Max.	Min.	RMS	Max.	Min.	RMS
S-N Dir.	105	-117	23	508	-512	179.74

* Vibration Properties measured by Laser Vibrometer at 1/2 Core Out-pile Test Facility

Thank you for your attention!

Korea Atomic Energy Research Institute

HANARO